
Salifort Motors project lab

February 13, 2025

1 Capstone project: Providing data-driven suggestions for HR
1.1 Description and deliverables
This capstone project is an opportunity to analyze a dataset and build predictive models that can
provide insights to the Human Resources (HR) department of a large consulting firm.

2 PACE stages

2.1 Pace: Plan
In this stage, consider the following:

2.1.1 Understand the business scenario and problem

The HR department at Salifort Motors wants to take some initiatives to improve employee satis-
faction levels at the company. They collected data from employees, but now they don’t know what
to do with it. They refer to you as a data analytics professional and ask you to provide data-driven
suggestions based on your understanding of the data. They have the following question: what’s
likely to make the employee leave the company?

Your goals in this project are to analyze the data collected by the HR department and to build a
model that predicts whether or not an employee will leave the company.

If you can predict employees likely to quit, it might be possible to identify factors that contribute
to their leaving. Because it is time-consuming and expensive to find, interview, and hire new
employees, increasing employee retention will be beneficial to the company.

2.1.2 Familiarize yourself with the HR dataset

In this dataset, there are 14,999 rows, 10 columns, and these variables:

Variable Description
satisfaction_level Employee-reported job satisfaction level [0–1]
last_evaluation Score of employee’s last performance review

[0–1]
number_project Number of projects employee contributes to

1

https://www.kaggle.com/datasets/mfaisalqureshi/hr-analytics-and-job-prediction?select=HR_comma_sep.csv

Variable Description
average_monthly_hours Average number of hours employee worked per

month
time_spend_company How long the employee has been with the

company (years)
Work_accident Whether or not the employee experienced an

accident while at work
left Whether or not the employee left the company
promotion_last_5years Whether or not the employee was promoted in

the last 5 years
Department The employee’s department
salary The employee’s salary (U.S. dollars)

2.2 Step 1. Imports
• Import packages
• Load dataset

2.2.1 Import packages

[1]: # Import packages

For data manipulation
import numpy as np
import pandas as pd

For data visualization
import matplotlib.pyplot as plt
import seaborn as sns

For displaying all of the columns in dataframes
pd.set_option('display.max_columns', None)

For data modeling
from xgboost import XGBClassifier
from xgboost import XGBRegressor
from xgboost import plot_importance

from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier

For metrics and helpful functions
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import accuracy_score, precision_score,␣

↪recall_score,f1_score, confusion_matrix, ConfusionMatrixDisplay,␣
↪classification_report

2

from sklearn.metrics import roc_auc_score, roc_curve
from sklearn.tree import plot_tree

For displaying all of the columns in dataframes
pd.set_option('display.max_columns', None)

Saving Model
import pickle

2.2.2 Load dataset

[2]: # Load dataset into a dataframe
df0 = pd.read_csv("HR_capstone_dataset.csv")

Display first few rows of the dataframe
df0.head()

[2]: satisfaction_level last_evaluation number_project average_montly_hours \
0 0.38 0.53 2 157
1 0.80 0.86 5 262
2 0.11 0.88 7 272
3 0.72 0.87 5 223
4 0.37 0.52 2 159

time_spend_company Work_accident left promotion_last_5years Department \
0 3 0 1 0 sales
1 6 0 1 0 sales
2 4 0 1 0 sales
3 5 0 1 0 sales
4 3 0 1 0 sales

salary
0 low
1 medium
2 medium
3 low
4 low

2.3 Step 2. Data Exploration (Initial EDA and data cleaning)
2.3.1 Gather basic information about the data

[3]: # Gather basic information about the data
df0.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 10 columns):

3

Column Non-Null Count Dtype
--- ------ -------------- -----
0 satisfaction_level 14999 non-null float64
1 last_evaluation 14999 non-null float64
2 number_project 14999 non-null int64
3 average_montly_hours 14999 non-null int64
4 time_spend_company 14999 non-null int64
5 Work_accident 14999 non-null int64
6 left 14999 non-null int64
7 promotion_last_5years 14999 non-null int64
8 Department 14999 non-null object
9 salary 14999 non-null object
dtypes: float64(2), int64(6), object(2)
memory usage: 1.1+ MB

2.3.2 Gather descriptive statistics about the data

[4]: # Gather descriptive statistics about the data
df0.describe()

[4]: satisfaction_level last_evaluation number_project \
count 14999.000000 14999.000000 14999.000000
mean 0.612834 0.716102 3.803054
std 0.248631 0.171169 1.232592
min 0.090000 0.360000 2.000000
25% 0.440000 0.560000 3.000000
50% 0.640000 0.720000 4.000000
75% 0.820000 0.870000 5.000000
max 1.000000 1.000000 7.000000

average_montly_hours time_spend_company Work_accident left \
count 14999.000000 14999.000000 14999.000000 14999.000000
mean 201.050337 3.498233 0.144610 0.238083
std 49.943099 1.460136 0.351719 0.425924
min 96.000000 2.000000 0.000000 0.000000
25% 156.000000 3.000000 0.000000 0.000000
50% 200.000000 3.000000 0.000000 0.000000
75% 245.000000 4.000000 0.000000 0.000000
max 310.000000 10.000000 1.000000 1.000000

promotion_last_5years
count 14999.000000
mean 0.021268
std 0.144281
min 0.000000
25% 0.000000
50% 0.000000

4

75% 0.000000
max 1.000000

2.3.3 Rename columns

As a data cleaning step, we rename the columns as needed. We standardize the column names so
that they are all in snake_case, correct any column names that are misspelled, and make column
names more concise as needed.

[5]: # Display all column names
df0.columns

[5]: Index(['satisfaction_level', 'last_evaluation', 'number_project',
'average_montly_hours', 'time_spend_company', 'Work_accident', 'left',
'promotion_last_5years', 'Department', 'salary'],
dtype='object')

[6]: # Rename columns as needed
df0 = df0.rename(columns={'Work_accident': 'work_accident',

'average_montly_hours': 'average_monthly_hours',
'time_spend_company': 'tenure',
'Department': 'department'})

Display all column names after the update
df0.columns

[6]: Index(['satisfaction_level', 'last_evaluation', 'number_project',
'average_monthly_hours', 'tenure', 'work_accident', 'left',
'promotion_last_5years', 'department', 'salary'],
dtype='object')

2.3.4 Check missing values

We check for any missing values in the data.

[7]: # Check for missing values
df0.isna().sum()

[7]: satisfaction_level 0
last_evaluation 0
number_project 0
average_monthly_hours 0
tenure 0
work_accident 0
left 0
promotion_last_5years 0
department 0
salary 0

5

dtype: int64

There are no missing values in the data.

2.3.5 Check duplicates

We check for any duplicate entries in the data.

[8]: # Check for duplicates
df0.duplicated().sum()

[8]: np.int64(3008)

3,008 rows contain duplicates. That is 20% of the data.

[9]: # Inspect some rows containing duplicates as needed
df0[df0.duplicated()].head()

[9]: satisfaction_level last_evaluation number_project \
396 0.46 0.57 2
866 0.41 0.46 2
1317 0.37 0.51 2
1368 0.41 0.52 2
1461 0.42 0.53 2

average_monthly_hours tenure work_accident left \
396 139 3 0 1
866 128 3 0 1
1317 127 3 0 1
1368 132 3 0 1
1461 142 3 0 1

promotion_last_5years department salary
396 0 sales low
866 0 accounting low
1317 0 sales medium
1368 0 RandD low
1461 0 sales low

The above output shows the first five occurences of rows that are duplicated farther down in the
dataframe. With several continuous variables across 10 columns, it seems very unlikely that these
observations are legitimate. We can proceed by dropping them.

[10]: # Drop duplicates and save resulting dataframe in a new variable
df1 = df0.drop_duplicates(keep='first')

Display first few rows of new dataframe
df1.head()

6

[10]: satisfaction_level last_evaluation number_project average_monthly_hours \
0 0.38 0.53 2 157
1 0.80 0.86 5 262
2 0.11 0.88 7 272
3 0.72 0.87 5 223
4 0.37 0.52 2 159

tenure work_accident left promotion_last_5years department salary
0 3 0 1 0 sales low
1 6 0 1 0 sales medium
2 4 0 1 0 sales medium
3 5 0 1 0 sales low
4 3 0 1 0 sales low

2.3.6 Check outliers

Check for outliers in the data.

[11]: # Create a boxplot to visualize distribution of `tenure` and detect any outliers
plt.figure(figsize=(6,6))
plt.title('Boxplot to detect outliers for tenure', fontsize=12)
plt.xticks(fontsize=12)
plt.yticks(fontsize=12)
sns.boxplot(x=df1['tenure'])
plt.show()

7

The boxplot above shows that there are outliers in the tenure variable.

It would be helpful to investigate how many rows in the data contain outliers in the tenure column.

[12]: # Determine the number of rows containing outliers

Compute the 25th percentile value in `tenure`
percentile25 = df1['tenure'].quantile(0.25)

Compute the 75th percentile value in `tenure`
percentile75 = df1['tenure'].quantile(0.75)

Compute the interquartile range in `tenure`
iqr = percentile75 - percentile25

8

Define the upper limit and lower limit for non-outlier values in `tenure`
upper_limit = percentile75 + 1.5 * iqr
lower_limit = percentile25 - 1.5 * iqr
print("Lower limit:", lower_limit)
print("Upper limit:", upper_limit)

Identify subset of data containing outliers in `tenure`
outliers = df1[(df1['tenure'] > upper_limit) | (df1['tenure'] < lower_limit)]

Count how many rows in the data contain outliers in `tenure`
print("Number of rows in the data containing outliers in `tenure`:",␣

↪len(outliers))

Lower limit: 1.5
Upper limit: 5.5
Number of rows in the data containing outliers in `tenure`: 824

Certain types of models are more sensitive to outliers than others. Depending on the models we
choose, we may need to consider whether to remove these outliers.

3 pAce: Analyze Stage
• Perform EDA (analyze relationships between variables)

3.1 Step 2. Data Exploration (Continue EDA)
Begin by understanding how many employees left and what percentage of all employees this repre-
sents.

[13]: # Get numbers of people who left vs. stayed
print(df1['left'].value_counts())
print()

Get percentages of people who left vs. stayed
print(df1['left'].value_counts(normalize=True))

left
0 10000
1 1991
Name: count, dtype: int64

left
0 0.833959
1 0.166041
Name: proportion, dtype: float64

3.1.1 Data visualizations

Now, we examine variables and create plots to visualize relationships between them.

9

We can start by creating a stacked boxplot showing average_monthly_hours distributions for
number_project, comparing the distributions of employees who stayed versus those who left.

[14]: # Create a boxplot and histogram

Set figure and axes
fig, ax = plt.subplots(1, 2, figsize = (22,8))

Create boxplot showing `average_monthly_hours` distributions for␣
↪`number_project`, comparing employees who stayed versus those who left

sns.boxplot(data=df1, x='average_monthly_hours', y='number_project',␣
↪hue='left', orient="h", ax=ax[0])

ax[0].invert_yaxis()
ax[0].set_title('Monthly hours by number of projects', fontsize='14')

Create histogram showing distribution of `number_project`, comparing␣
↪employees who stayed versus those who left

#tenure_stay = df1[df1['left']==0]['number_project']
#tenure_left = df1[df1['left']==1]['number_project']
sns.histplot(data=df1, x='number_project', hue='left', multiple='dodge',␣

↪shrink=2, ax=ax[1])
ax[1].set_title('Number of projects histogram', fontsize='14')

Display the plots
plt.show()

It might be natural that people who work on more projects would also work longer hours. This
appears to be the case here, with the mean hours of each group (stayed and left) increasing with
number of projects worked. However, a few things stand out from this plot.

1. There are two groups of employees who left the company: (A) those who worked considerably
less than their peers with the same number of projects, and (B) those who worked much
more. Of those in group A, it’s possible that they were fired. It’s also possible that this group

10

includes employees who had already given their notice and were assigned fewer hours because
they were already on their way out the door. For those in group B, it’s reasonable to infer
that they probably quit. The folks in group B likely contributed a lot to the projects they
worked in; they might have been the largest contributors to their projects.

2. Everyone with seven projects left the company, and the interquartile ranges of this group
and those who left with six projects was ~255–295 hours/month—much more than any other
group.

3. The optimal number of projects for employees to work on seems to be 3–4. The ratio of
left/stayed is very small for these cohorts.

4. If you assume a work week of 40 hours and two weeks of vacation per year, then the average
number of working hours per month of employees working Monday–Friday = 50 weeks * 40
hours per week / 12 months = 166.67 hours per month. This means that, aside from
the employees who worked on two projects, every group—even those who didn’t leave the
company—worked considerably more hours than this. It seems that employees here are
overworked.

As the next step, we can confirm that all employees with seven projects left.

[15]: # Get value counts of stayed/left for employees with 7 projects
df1[df1['number_project']==7]['left'].value_counts()

[15]: left
1 145
Name: count, dtype: int64

This confirms that all employees with 7 projects did leave, no one stays.

Next, we can examine the average monthly hours versus the satisfaction levels.

[16]: # Create scatterplot of `average_monthly_hours` versus `satisfaction_level`,␣
↪comparing employees who stayed versus those who left

plt.figure(figsize=(16, 9))
sns.scatterplot(data=df1, x='average_monthly_hours', y='satisfaction_level',␣

↪hue='left', alpha=0.4)
plt.axvline(x=166.67, color='#ff6361', label='166.67 h/month', ls='--')
plt.legend(labels=['166.67 h/month', 'left', 'stayed'])
plt.title('Monthly hours by last evaluation score', fontsize='14');

11

The scatterplot above shows that there was a sizeable group of employees who worked ~240–315
hours per month. 315 hours per month is over 75 hours per week for a whole year. It’s likely this
is related to their satisfaction levels being close to zero.

The plot also shows another group of people who left, those who had more normal working hours.
Even so, their satisfaction was only around 0.4. It’s difficult to speculate about why they might
have left. It’s possible they felt pressured to work more, considering so many of their peers worked
more. And that pressure could have lowered their satisfaction levels.

Finally, there is a group who worked ~210–280 hours per month, and they had satisfaction levels
ranging ~0.7–0.9.

The strange shape of the plot indicates that the data is not issued from the real world but built
for academic purposes probably.

For the next visualization, it might be interesting to visualize satisfaction levels by tenure.

[17]: # Create a boxplot and histogram

Set figure and axes
fig, ax = plt.subplots(1, 2, figsize = (22,8))

Create boxplot showing distributions of `satisfaction_level` by tenure,␣
↪comparing employees who stayed versus those who left

sns.boxplot(data=df1, x='satisfaction_level', y='tenure', hue='left',␣
↪orient="h", ax=ax[0])

ax[0].invert_yaxis()
ax[0].set_title('Satisfaction by tenure', fontsize='14')

12

Create histogram showing distribution of `tenure`, comparing employees who␣
↪stayed versus those who left

#tenure_stay = df1[df1['left']==0]['tenure']
#tenure_left = df1[df1['left']==1]['tenure']
sns.histplot(data=df1, x='tenure', hue='left', multiple='dodge', shrink=5,␣

↪ax=ax[1])
ax[1].set_title('Tenure histogram', fontsize='14')

plt.show();

• Employees who left fall into two general categories: dissatisfied employees with shorter tenures
and very satisfied employees with medium-length tenures.

• Four-year employees who left seem to have an unusually low satisfaction level. It’s worth
investigating changes to company policy that might have affected people specifically at the
four-year mark.

• The longest-tenured employees didn’t leave. Their satisfaction levels aligned with those of
newer employees who stayed.

• The histogram shows that there are relatively few longer-tenured employees. It’s possible
that they’re the higher-ranking, higher-paid employees.

As the next step in analyzing the data, we can calculate the mean and median satisfaction scores
of employees who left and those who didn’t.

[18]: # Calculate mean and median satisfaction scores of employees who left and those␣
↪who stayed

df1.groupby(['left'])['satisfaction_level'].agg(["mean","median"])

[18]: mean median
left
0 0.667365 0.69
1 0.440271 0.41

13

The mean and median satisfaction scores of employees who left are lower than those of employees
who stayed.

Next, we can examine salary levels for different tenures.

[19]: # Create histograms

Set figure and axes
fig, ax = plt.subplots(1, 2, figsize = (22,8))

Consider short-tenured employees as less or equal to 6 years
tenure_short = df1[df1['tenure'] < 7]

Define long-tenured employees as greater or equal to 7 years
tenure_long = df1[df1['tenure'] > 6]

Plot short-tenured histogram
sns.histplot(data=tenure_short, x='tenure', hue='salary', discrete=1,

hue_order=['low', 'medium', 'high'], multiple='dodge', shrink=.5,␣
↪ax=ax[0])

ax[0].set_title('Salary histogram by tenure: short-tenured people',␣
↪fontsize='14')

Plot long-tenured histogram
sns.histplot(data=tenure_long, x='tenure', hue='salary', discrete=1,

hue_order=['low', 'medium', 'high'], multiple='dodge', shrink=.4,␣
↪ax=ax[1])

ax[1].set_title('Salary histogram by tenure: long-tenured people',␣
↪fontsize='14');

The graphs above show that employee salaries have no impact on their tenure.

Next, we can explore whether there’s a correlation between working long hours and receiv-

14

ing high evaluation scores. We can create a scatterplot of average_monthly_hours versus
last_evaluation.

[20]: # Create scatterplot of `average_monthly_hours` versus `last_evaluation`
plt.figure(figsize=(16, 9))
sns.scatterplot(data=df1, x='average_monthly_hours', y='last_evaluation',␣

↪hue='left', alpha=0.4)
plt.axvline(x=166.67, color='#ff6361', label='166.67 h/month', ls='--')
plt.legend(labels=['166.67 h/month', 'left', 'stayed'])
plt.title('Monthly hours by last evaluation score', fontsize='14');

• The scatterplot indicates two groups of employees who left: overworked employees who per-
formed very well and employees who worked slightly under the nominal monthly average of
166.67 hours with lower evaluation scores.

• There seems to be a correlation between hours worked and evaluation score.
• Most of the employees in this company work well over 167 hours per month.

Next, we can examine whether employees who worked very long hours were promoted in the last
five years.

[21]: # Create plot to examine relationship between `average_monthly_hours` and␣
↪`promotion_last_5years`

plt.figure(figsize=(16, 3))
sns.scatterplot(data=df1, x='average_monthly_hours', y='promotion_last_5years',␣

↪hue='left', alpha=0.4)
plt.axvline(x=166.67, color='#ff6361', ls='--')

15

plt.legend(labels=['166.67 h/month.', 'left', 'stayed'])
plt.title('Monthly hours by promotion last 5 years', fontsize='14');

• Very few employees, who were promoted in the last five years, left
• Very few employees who worked the most hours were promoted
• All of the employees who left were working the longest hours

Next, we can inspect how the employees who left are distributed across departments.

[22]: # Display counts for each department
df1["department"].value_counts()

[22]: department
sales 3239
technical 2244
support 1821
IT 976
RandD 694
product_mng 686
marketing 673
accounting 621
hr 601
management 436
Name: count, dtype: int64

[23]: # Create stacked histogram to compare department distribution of employees who␣
↪left to that of employees who didn't

plt.figure(figsize=(11,8))
sns.histplot(data=df1, x='department', hue='left', discrete=1,

hue_order=[0, 1], multiple='dodge', shrink=.5)
plt.xticks(rotation=45)
plt.title('Counts of stayed/left by department', fontsize=14);

16

There doesn’t seem to be any department that differs significantly in its proportion of employees
who left to those who stayed.

Lastly, we can check for strong correlations between variables in the data.

[24]: # Plot a correlation heatmap
plt.figure(figsize=(16, 9))
heatmap = sns.heatmap(df1.corr(numeric_only=True), vmin=-1, vmax=1, annot=True,␣

↪cmap=sns.color_palette("vlag", as_cmap=True))
heatmap.set_title('Correlation Heatmap', fontdict={'fontsize':14}, pad=12);

17

The correlation heatmap confirms that the number of projects, monthly hours, and evaluation scores
all have some positive correlation with each other, and whether an employee leaves is negatively
correlated with their satisfaction level.

3.1.2 Insights

It appears that employees are leaving the company as a result of poor management. Leaving is
tied to longer working hours, many projects, and generally lower satisfaction levels. It can be
ungratifying to work long hours and not receive promotions or good evaluation scores. There’s a
sizeable group of employees at this company who are probably burned out. It also appears that if
an employee has spent more than six years at the company, they tend not to leave.

4 paCe: Construct Stage
• Determine which models are most appropriate
• Construct the model
• Confirm model assumptions
• Evaluate model results to determine how well the model fits the data

4.1 Recall model assumptions
Logistic Regression model assumptions - Outcome variable is categorical - Observations are
independent of each other - No severe multicollinearity among X variables - No extreme outliers

18

- Linear relationship between each X variable and the logit of the outcome variable - Sufficiently
large sample size

4.2 Step 3. Model Building, Step 4. Results and Evaluation
• Fit a model that predicts the outcome variable using two or more independent variables
• Check model assumptions
• Evaluate the model

4.2.1 Identify the type of prediction task.

The goal is to predict whether an employee leaves the company, which is a categorical outcome
variable. So this task involves classification. More specifically, this involves binary classification,
since the outcome variable left can be either 1 (indicating employee left) or 0 (indicating employee
didn’t leave).

4.2.2 Identify the types of models most appropriate for this task.

Since the variable we want to predict (whether an employee leaves the company) is categorical, we
could either build a Logistic Regression model, or a Tree-based Machine Learning model.

4.2.3 Modeling Approach A: Logistic Regression Model

This approach covers implementation of Logistic Regression.

Logistic regression Note that binomial logistic regression suits the task because it involves
binary classification.

Before splitting the data, we encode the non-numeric variables. There are two: department and
salary.

department is a categorical variable, which means you can dummy it for modeling.

salary is categorical too, but it’s ordinal. There’s a hierarchy to the categories, so it’s better not
to dummy this column, but rather to convert the levels to numbers, 0–2.

[25]: # Copy the dataframe
df_enc = df1.copy()

Encode the `salary` column as an ordinal numeric category
df_enc['salary'] = (

df_enc['salary'].astype('category')
.cat.set_categories(['low', 'medium', 'high'])
.cat.codes

)

Dummy encode the `department` column
df_enc = pd.get_dummies(df_enc, drop_first=False)

Display the new dataframe

19

df_enc.head()

[25]: satisfaction_level last_evaluation number_project average_monthly_hours \
0 0.38 0.53 2 157
1 0.80 0.86 5 262
2 0.11 0.88 7 272
3 0.72 0.87 5 223
4 0.37 0.52 2 159

tenure work_accident left promotion_last_5years salary department_IT \
0 3 0 1 0 0 False
1 6 0 1 0 1 False
2 4 0 1 0 1 False
3 5 0 1 0 0 False
4 3 0 1 0 0 False

department_RandD department_accounting department_hr \
0 False False False
1 False False False
2 False False False
3 False False False
4 False False False

department_management department_marketing department_product_mng \
0 False False False
1 False False False
2 False False False
3 False False False
4 False False False

department_sales department_support department_technical
0 True False False
1 True False False
2 True False False
3 True False False
4 True False False

Create a heatmap to visualize how correlated variables are.

[26]: # Create a heatmap to visualize how correlated variables are
plt.figure(figsize=(8, 6))
sns.heatmap(df_enc[['satisfaction_level', 'last_evaluation', 'number_project',␣

↪'average_monthly_hours', 'tenure']]
.corr(), annot=True, cmap="crest")

plt.title('Heatmap of the dataset')
plt.show()

20

We create a stacked bart plot to visualize number of employees across department, comparing those
who left with those who didn’t.

[27]: # In the legend, 0 (purple color) represents employees who did not leave, 1␣
↪(red color) represents employees who left

pd.crosstab(df1['department'], df1['left']).plot(kind ='bar',color='mr')
plt.title('Counts of employees who left versus stayed across department')
plt.ylabel('Employee count')
plt.xlabel('Department')
plt.show()

21

Since logistic regression is quite sensitive to outliers, it would be a good idea at this stage to remove
the outliers in the tenure column that were identified earlier.

[28]: # Select rows without outliers in `tenure` and save resulting dataframe in a␣
↪new variable

df_logreg = df_enc[(df_enc['tenure'] >= lower_limit) & (df_enc['tenure'] <=␣
↪upper_limit)]

Display first few rows of new dataframe
df_logreg.head()

[28]: satisfaction_level last_evaluation number_project average_monthly_hours \
0 0.38 0.53 2 157
2 0.11 0.88 7 272
3 0.72 0.87 5 223
4 0.37 0.52 2 159

22

5 0.41 0.50 2 153

tenure work_accident left promotion_last_5years salary department_IT \
0 3 0 1 0 0 False
2 4 0 1 0 1 False
3 5 0 1 0 0 False
4 3 0 1 0 0 False
5 3 0 1 0 0 False

department_RandD department_accounting department_hr \
0 False False False
2 False False False
3 False False False
4 False False False
5 False False False

department_management department_marketing department_product_mng \
0 False False False
2 False False False
3 False False False
4 False False False
5 False False False

department_sales department_support department_technical
0 True False False
2 True False False
3 True False False
4 True False False
5 True False False

We isolate the outcome variable, which is the variable you want your model to predict.

[29]: # Isolate the outcome variable
y = df_logreg['left']

Display first few rows of the outcome variable
y.head()

[29]: 0 1
2 1
3 1
4 1
5 1
Name: left, dtype: int64

We keep the features to use in your model to predict the outcome variable, left.

23

[30]: # Select the features to use in your model
X = df_logreg.drop('left', axis=1)

Display the first few rows of the selected features
X.head()

[30]: satisfaction_level last_evaluation number_project average_monthly_hours \
0 0.38 0.53 2 157
2 0.11 0.88 7 272
3 0.72 0.87 5 223
4 0.37 0.52 2 159
5 0.41 0.50 2 153

tenure work_accident promotion_last_5years salary department_IT \
0 3 0 0 0 False
2 4 0 0 1 False
3 5 0 0 0 False
4 3 0 0 0 False
5 3 0 0 0 False

department_RandD department_accounting department_hr \
0 False False False
2 False False False
3 False False False
4 False False False
5 False False False

department_management department_marketing department_product_mng \
0 False False False
2 False False False
3 False False False
4 False False False
5 False False False

department_sales department_support department_technical
0 True False False
2 True False False
3 True False False
4 True False False
5 True False False

We split the data into training set and testing set: we stratify based on the values in y, since the
classes are unbalanced.

[31]: # Split the data into training set and testing set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,␣

↪stratify=y, random_state=42)

24

We construct a logistic regression model and fit it to the training dataset.

[32]: # Construct a logistic regression model and fit it to the training dataset
log_clf = LogisticRegression(random_state=42, max_iter=500).fit(X_train,␣

↪y_train)

We test the logistic regression model on the test set.

[33]: # Use the logistic regression model to get predictions on the test set
y_pred = log_clf.predict(X_test)

We create the confusion matrix to visualize the results of the logistic regression model.

[34]: # Compute values for the confusion matrix
log_cm = confusion_matrix(y_test, y_pred, labels=log_clf.classes_)

Create the display of the confusion matrix
log_disp = ConfusionMatrixDisplay(confusion_matrix=log_cm,

display_labels=log_clf.classes_)

Plot confusion matrix
log_disp.plot(values_format='')

Display plot
plt.show()

25

The upper-left quadrant displays the number of true negatives.
True negatives: The number of people who did not leave that the model accurately predicted did
not leave.

The upper-right quadrant displays the number of false positives.
False positives: The number of people who did not leave the model inaccurately predicted as
leaving.

The bottom-left quadrant displays the number of false negatives.
False negatives: The number of people who left that the model inaccurately predicted did not leave.

The bottom-right quadrant displays the number of true positives.
True positives: The number of people who left the model accurately predicted as leaving.

A perfect model would yield all true negatives and true positives, and no false negatives or false
positives.

We create a classification report that includes precision, recall, f1-score, and accuracy metrics to
evaluate the performance of the logistic regression model.

We check the class balance in the data. In other words, we check the value counts in the left
column. Since this is a binary classification task, the class balance informs the way we interpret
accuracy metrics.

[35]: df_logreg['left'].value_counts(normalize=True)

[35]: left
0 0.831468
1 0.168532
Name: proportion, dtype: float64

There is an approximately 83%-17% split. So the data is not perfectly balanced, but it is not too
imbalanced. If it was more severely imbalanced, we might want to resample the data to make it
more balanced. In this case, we can use this data without modifying the class balance and continue
evaluating the model.

[36]: # Create classification report for logistic regression model
target_names = ['Predicted would not leave', 'Predicted would leave']
print(classification_report(y_test, y_pred, target_names=target_names))

precision recall f1-score support

Predicted would not leave 0.86 0.93 0.90 2321
Predicted would leave 0.44 0.26 0.33 471

accuracy 0.82 2792
macro avg 0.65 0.60 0.61 2792

weighted avg 0.79 0.82 0.80 2792

26

The classification report above shows that the logistic regression model achieved a precision of 79%,
recall of 82%, f1-score of 80% (all weighted averages), and accuracy of 82%. However, if it’s most
important to predict employees who leave, then the scores are significantly lower.

4.2.4 Modeling Approach B: Tree-based Model

This approach covers implementation of Decision Tree and Random Forest.

We isolate the outcome variable.

[37]: # Isolate the outcome variable
y = df_enc['left']

Display the first few rows of `y`
y.head()

[37]: 0 1
1 1
2 1
3 1
4 1
Name: left, dtype: int64

We select the features.

[38]: # Select the features
X = df_enc.drop('left', axis=1)

Display the first few rows of `X`
X.head()

[38]: satisfaction_level last_evaluation number_project average_monthly_hours \
0 0.38 0.53 2 157
1 0.80 0.86 5 262
2 0.11 0.88 7 272
3 0.72 0.87 5 223
4 0.37 0.52 2 159

tenure work_accident promotion_last_5years salary department_IT \
0 3 0 0 0 False
1 6 0 0 1 False
2 4 0 0 1 False
3 5 0 0 0 False
4 3 0 0 0 False

department_RandD department_accounting department_hr \
0 False False False
1 False False False
2 False False False

27

3 False False False
4 False False False

department_management department_marketing department_product_mng \
0 False False False
1 False False False
2 False False False
3 False False False
4 False False False

department_sales department_support department_technical
0 True False False
1 True False False
2 True False False
3 True False False
4 True False False

We split the data into training, validating, and testing sets.

[39]: # Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,␣

↪stratify=y, random_state=0)

Decision tree - Round 1 We construct a decision tree model and set up cross-validated grid-
search to exhaustively search for the best model parameters.

[40]: # Instantiate model
tree = DecisionTreeClassifier(random_state=0)

Assign a dictionary of hyperparameters to search over
cv_params = {'max_depth':[4, 6, 8, None],

'min_samples_leaf': [2, 5, 1],
'min_samples_split': [2, 4, 6]
}

Assign a dictionary of scoring metrics to capture
scoring = ['accuracy', 'precision', 'recall', 'f1', 'roc_auc']

Instantiate GridSearch
tree1 = GridSearchCV(tree, cv_params, scoring=scoring, cv=4, refit='roc_auc')

We fit the decision tree model to the training data.

[41]: %%time
tree1.fit(X_train, y_train)

CPU times: total: 8.05 s
Wall time: 8.2 s

28

[41]: GridSearchCV(cv=4, estimator=DecisionTreeClassifier(random_state=0),
param_grid={'max_depth': [4, 6, 8, None],

'min_samples_leaf': [2, 5, 1],
'min_samples_split': [2, 4, 6]},

refit='roc_auc',
scoring=['accuracy', 'precision', 'recall', 'f1', 'roc_auc'])

We identify the optimal values for the decision tree parameters.

[42]: # Check best parameters
tree1.best_params_

[42]: {'max_depth': 4, 'min_samples_leaf': 5, 'min_samples_split': 2}

We identify the best AUC score achieved by the decision tree model on the training set.

[43]: # Check best AUC score on CV
tree1.best_score_

[43]: np.float64(0.969819392792457)

This is a strong AUC score, which shows that this model can predict employees who will leave very
well.

Next, we write a function that will help to extract all the scores from the grid search.

[44]: def make_results(model_name:str, model_object, metric:str):
'''
Arguments:

model_name (string): what you want the model to be called in the output␣
↪table

model_object: a fit GridSearchCV object
metric (string): precision, recall, f1, accuracy, or auc

Returns a pandas df with the F1, recall, precision, accuracy, and auc scores
for the model with the best mean 'metric' score across all validation folds.

↪

'''

Create dictionary that maps input metric to actual metric name in␣
↪GridSearchCV

metric_dict = {'auc': 'mean_test_roc_auc',
'precision': 'mean_test_precision',
'recall': 'mean_test_recall',
'f1': 'mean_test_f1',
'accuracy': 'mean_test_accuracy'
}

Get all the results from the CV and put them in a df

29

cv_results = pd.DataFrame(model_object.cv_results_)

Isolate the row of the df with the max(metric) score
best_estimator_results = cv_results.iloc[cv_results[metric_dict[metric]].

↪idxmax(), :]

Extract Accuracy, precision, recall, and f1 score from that row
auc = best_estimator_results.mean_test_roc_auc
f1 = best_estimator_results.mean_test_f1
recall = best_estimator_results.mean_test_recall
precision = best_estimator_results.mean_test_precision
accuracy = best_estimator_results.mean_test_accuracy

Create table of results
table = pd.DataFrame()
table = pd.DataFrame({'model': [model_name],

'precision': [precision],
'recall': [recall],
'F1': [f1],
'accuracy': [accuracy],
'auc': [auc]

})

return table

We use this function to get all the scores from grid search.

[45]: # Get all CV scores
tree1_cv_results = make_results('decision tree cv', tree1, 'auc')
tree1_cv_results

[45]: model precision recall F1 accuracy auc
0 decision tree cv 0.914552 0.916949 0.915707 0.971978 0.969819

All of these scores from the decision tree model are strong indicators of good model performance.

However, decision trees can be vulnerable to overfitting, and random forests avoid overfitting by
incorporating multiple trees to make predictions. we can construct a random forest model next.

Random forest - Round 1 We construct a random forest model and set up cross-validated
grid-search to exhaustively search for the best model parameters.

[46]: # Instantiate model
rf = RandomForestClassifier(random_state=0)

Assign a dictionary of hyperparameters to search over
cv_params = {'max_depth': [3,5, None],

'max_features': [1.0],
'max_samples': [0.7, 1.0],

30

'min_samples_leaf': [1,2,3],
'min_samples_split': [2,3,4],
'n_estimators': [300, 500],
}

Assign a dictionary of scoring metrics to capture
scoring = ['accuracy', 'precision', 'recall', 'f1', 'roc_auc']

Instantiate GridSearch
rf1 = GridSearchCV(rf, cv_params, scoring=scoring, cv=4, refit='roc_auc')

We fit the random forest model to the training data.

[47]: %%time
#rf1.fit(X_train, y_train) # --> Wall time: ~30min

CPU times: total: 0 ns
Wall time: 0 ns

The fitting time is long. We save the model to reuse later. In that case we specify path to save it.

[48]: # Define a path to the folder where you want to save the model
path = '' #Same folder as project

We define functions to pickle the model and read in the model.

[49]: def write_pickle(path, model_object, save_as:str):
'''
In:

path: path of folder where you want to save the pickle
model_object: a model you want to pickle
save_as: filename for how you want to save the model

Out: A call to pickle the model in the folder indicated
'''

with open(path + save_as + '.pickle', 'wb') as to_write:
pickle.dump(model_object, to_write)

[50]: def read_pickle(path, saved_model_name:str):
'''
In:

path: path to folder where you want to read from
saved_model_name: filename of pickled model you want to read in

Out:
model: the pickled model

'''
with open(path + saved_model_name + '.pickle', 'rb') as to_read:

31

model = pickle.load(to_read)

return model

We us these functions defined above to save the model in a pickle file and then read it in.

[51]: # Write pickle
#write_pickle(path, rf1, 'hr_rf1')

[52]: # Read pickle
rf1 = read_pickle(path, 'hr_rf1')

We identify the best AUC score achieved by the random forest model on the training set.

[53]: # Check best AUC score on CV
rf1.best_score_

[53]: np.float64(0.9804250949807172)

We identify the optimal values for the parameters of the random forest model.

[54]: # Check best params
rf1.best_params_

[54]: {'max_depth': 5,
'max_features': 1.0,
'max_samples': 0.7,
'min_samples_leaf': 1,
'min_samples_split': 4,
'n_estimators': 500}

We collect the evaluation scores on the training set for the decision tree and random forest models.

[55]: # Get all CV scores
rf1_cv_results = make_results('random forest cv', rf1, 'auc')
print(tree1_cv_results)
print(rf1_cv_results)

model precision recall F1 accuracy auc
0 decision tree cv 0.914552 0.916949 0.915707 0.971978 0.969819

model precision recall F1 accuracy auc
0 random forest cv 0.950023 0.915614 0.932467 0.977983 0.980425

The evaluation scores of the random forest model are better than those of the decision tree model,
with the exception of recall (the recall score of the random forest model is approximately 0.001 lower,
which is a negligible amount). This indicates that the random forest model mostly outperforms
the decision tree model.

Next, we can evaluate the final model on the test set.

We define a function that gets all the scores from a model’s predictions.

32

[56]: def get_scores(model_name:str, model, X_test_data, y_test_data):
'''
Generate a table of test scores.

In:
model_name (string): How you want your model to be named in the output␣

↪table
model: A fit GridSearchCV object
X_test_data: numpy array of X_test data
y_test_data: numpy array of y_test data

Out: pandas df of precision, recall, f1, accuracy, and AUC scores for your␣
↪model

'''

preds = model.best_estimator_.predict(X_test_data)

auc = roc_auc_score(y_test_data, preds)
accuracy = accuracy_score(y_test_data, preds)
precision = precision_score(y_test_data, preds)
recall = recall_score(y_test_data, preds)
f1 = f1_score(y_test_data, preds)

table = pd.DataFrame({'model': [model_name],
'precision': [precision],
'recall': [recall],
'f1': [f1],
'accuracy': [accuracy],
'AUC': [auc]
})

return table

Now we use the best performing model to predict on the test set.

[86]: # Get predictions on test data
rf1_test_scores = get_scores('random forest1 test', rf1, X_test, y_test)
rf1_test_scores

[86]: model precision recall f1 accuracy AUC
0 random forest1 test 0.964211 0.919679 0.941418 0.980987 0.956439

The test scores are very similar to the validation scores, which is good. This appears to be a strong
model. Since this test set was only used for this model, we can be more confident that the model’s
performance on this data is representative of how it will perform on new, unseeen data.

Feature Engineering The evaluation scores look too high. There is a chance that there is some
data leakage occurring. Data leakage is when we use data to train the model that should not be

33

used during training, either because it appears in the test data or because it’s not data that we’d
expect to have when the model is actually deployed. Training a model with leaked data can give
an unrealistic score that is not replicated in production.

In this case, it’s likely that the company won’t have satisfaction levels reported for all of its employ-
ees. It’s also possible that the average_monthly_hours column is a source of some data leakage.
If employees have already decided upon quitting, or have already been identified by management
as people to be fired, they may be working fewer hours.

The first round of decision tree and random forest models included all variables as features. This
next round will incorporate feature engineering to build improved models.

We proceed by dropping satisfaction_level and creating a new feature that roughly captures
whether an employee is overworked. We call this new feature overworked. It will be a binary
variable.

[57]: # Drop `satisfaction_level` and save resulting dataframe in new variable
df2 = df_enc.drop('satisfaction_level', axis=1)

Display first few rows of new dataframe
df2.head()

[57]: last_evaluation number_project average_monthly_hours tenure \
0 0.53 2 157 3
1 0.86 5 262 6
2 0.88 7 272 4
3 0.87 5 223 5
4 0.52 2 159 3

work_accident left promotion_last_5years salary department_IT \
0 0 1 0 0 False
1 0 1 0 1 False
2 0 1 0 1 False
3 0 1 0 0 False
4 0 1 0 0 False

department_RandD department_accounting department_hr \
0 False False False
1 False False False
2 False False False
3 False False False
4 False False False

department_management department_marketing department_product_mng \
0 False False False
1 False False False
2 False False False
3 False False False
4 False False False

34

department_sales department_support department_technical
0 True False False
1 True False False
2 True False False
3 True False False
4 True False False

[58]: # Create `overworked` column. For now, it's identical to average monthly hours.
df2['overworked'] = df2['average_monthly_hours']

Inspect max and min average monthly hours values
print('Max hours:', df2['overworked'].max())
print('Min hours:', df2['overworked'].min())

Max hours: 310
Min hours: 96

166.67 is approximately the average number of monthly hours for someone who works 50 weeks per
year, 5 days per week, 8 hours per day.

We can define being overworked as working more than 175 hours per month on average.

To make the overworked column binary, we reassign the column using a boolean mask. -
df3['overworked'] > 175 creates a series of booleans, consisting of True for every value > 175
and False for every values � 175 - .astype(int) converts all True to 1 and all False to 0

[59]: # Define `overworked` as working > 175 hrs/week
df2['overworked'] = (df2['overworked'] > 175).astype(int)

Display first few rows of new column
df2['overworked'].head()

[59]: 0 0
1 1
2 1
3 1
4 0
Name: overworked, dtype: int64

We drop the average_monthly_hours column.

[60]: # Drop the `average_monthly_hours` column
df2 = df2.drop('average_monthly_hours', axis=1)

Display first few rows of resulting dataframe
df2.head()

[60]: last_evaluation number_project tenure work_accident left \
0 0.53 2 3 0 1

35

1 0.86 5 6 0 1
2 0.88 7 4 0 1
3 0.87 5 5 0 1
4 0.52 2 3 0 1

promotion_last_5years salary department_IT department_RandD \
0 0 0 False False
1 0 1 False False
2 0 1 False False
3 0 0 False False
4 0 0 False False

department_accounting department_hr department_management \
0 False False False
1 False False False
2 False False False
3 False False False
4 False False False

department_marketing department_product_mng department_sales \
0 False False True
1 False False True
2 False False True
3 False False True
4 False False True

department_support department_technical overworked
0 False False 0
1 False False 1
2 False False 1
3 False False 1
4 False False 0

Again, we isolate the features and target variables

[61]: # Isolate the outcome variable
y = df2['left']

Select the features
X = df2.drop('left', axis=1)

We split the data into training and testing sets.

[62]: # Create test data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25,␣

↪stratify=y, random_state=0)

Decision tree - Round 2

36

[63]: # Instantiate model
tree = DecisionTreeClassifier(random_state=0)

Assign a dictionary of hyperparameters to search over
cv_params = {'max_depth':[4, 6, 8, None],

'min_samples_leaf': [2, 5, 1],
'min_samples_split': [2, 4, 6]
}

Assign a dictionary of scoring metrics to capture
scoring = ['accuracy', 'precision', 'recall', 'f1', 'roc_auc']

Instantiate GridSearch
tree2 = GridSearchCV(tree, cv_params, scoring=scoring, cv=4, refit='roc_auc')

[64]: %%time
tree2.fit(X_train, y_train)

CPU times: total: 6.84 s
Wall time: 7.17 s

[64]: GridSearchCV(cv=4, estimator=DecisionTreeClassifier(random_state=0),
param_grid={'max_depth': [4, 6, 8, None],

'min_samples_leaf': [2, 5, 1],
'min_samples_split': [2, 4, 6]},

refit='roc_auc',
scoring=['accuracy', 'precision', 'recall', 'f1', 'roc_auc'])

[65]: # Check best params
tree2.best_params_

[65]: {'max_depth': 6, 'min_samples_leaf': 2, 'min_samples_split': 6}

[66]: # Check best AUC score on CV
tree2.best_score_

[66]: np.float64(0.9586752505340426)

This model performs very well, even without satisfaction levels and detailed hours worked data.

Next, we check the other scores.

[67]: # Get all CV scores
tree2_cv_results = make_results('decision tree2 cv', tree2, 'auc')
print(tree1_cv_results)
print(tree2_cv_results)

model precision recall F1 accuracy auc
0 decision tree cv 0.914552 0.916949 0.915707 0.971978 0.969819

37

model precision recall F1 accuracy auc
0 decision tree2 cv 0.856693 0.903553 0.878882 0.958523 0.958675

Some of the other scores fell. Still, the scores are very good.

Random forest - Round 2
[68]: # Instantiate model

rf = RandomForestClassifier(random_state=0)

Assign a dictionary of hyperparameters to search over
cv_params = {'max_depth': [3,5, None],

'max_features': [1.0],
'max_samples': [0.7, 1.0],
'min_samples_leaf': [1,2,3],
'min_samples_split': [2,3,4],
'n_estimators': [300, 500],
}

Assign a dictionary of scoring metrics to capture
scoring = ['accuracy', 'precision', 'recall', 'f1', 'roc_auc']

Instantiate GridSearch
rf2 = GridSearchCV(rf, cv_params, scoring=scoring, cv=4, refit='roc_auc')

[]: %%time
#rf2.fit(X_train, y_train) # --> Wall time: 34min 5s

CPU times: total: 32min 56s
Wall time: 33min 54s

[]: GridSearchCV(cv=4, estimator=RandomForestClassifier(random_state=0),
param_grid={'max_depth': [3, 5, None], 'max_features': [1.0],

'max_samples': [0.7, 1.0],
'min_samples_leaf': [1, 2, 3],
'min_samples_split': [2, 3, 4],
'n_estimators': [300, 500]},

refit='roc_auc',
scoring=['accuracy', 'precision', 'recall', 'f1', 'roc_auc'])

[]: # Write pickle
#write_pickle(path, rf2, 'hr_rf2')

[71]: # Read in pickle
rf2 = read_pickle(path, 'hr_rf2')

[72]: # Check best params
rf2.best_params_

38

[72]: {'max_depth': 5,
'max_features': 1.0,
'max_samples': 0.7,
'min_samples_leaf': 2,
'min_samples_split': 2,
'n_estimators': 300}

[73]: # Check best AUC score on CV
rf2.best_score_

[73]: np.float64(0.9648100662833985)

[74]: # Get all CV scores
rf2_cv_results = make_results('random forest2 cv', rf2, 'auc')
print(tree2_cv_results)
print(rf2_cv_results)

model precision recall F1 accuracy auc
0 decision tree2 cv 0.856693 0.903553 0.878882 0.958523 0.958675

model precision recall F1 accuracy auc
0 random forest2 cv 0.866758 0.878754 0.872407 0.957411 0.96481

The scores dropped slightly again, but the random forest performs better than the decision tree if
using AUC as the deciding metric.

We score the champion model on the test set now.

[75]: # Get predictions on test data
rf2_test_scores = get_scores('random forest2 test', rf2, X_test, y_test)
rf2_test_scores

[75]: model precision recall f1 accuracy AUC
0 random forest2 test 0.870406 0.903614 0.8867 0.961641 0.938407

This seems to be a stable, well-performing final model.

We plot a confusion matrix to visualize how well it predicts on the test set.

[76]: # Generate array of values for confusion matrix
preds = rf2.best_estimator_.predict(X_test)
cm = confusion_matrix(y_test, preds, labels=rf2.classes_)

Plot confusion matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm,

display_labels=rf2.classes_)
disp.plot(values_format='');

39

The model predicts more false positives than false negatives, which means that some employees
may be identified as at risk of quitting or getting fired, when that’s actually not the case. But this
is still a strong model.

For exploratory purpose, you inspect the splits of the decision tree model and the most important
features in the random forest model.

Decision tree splits
[77]: # Plot the tree

plt.figure(figsize=(85,20))
plot_tree(tree2.best_estimator_, max_depth=6, fontsize=14, feature_names=X.

↪columns,
class_names={0:'stayed', 1:'left'}, filled=True);

plt.show()

40

Decision tree feature importance We can also get the feature importance from decision trees.

[78]: #tree2_importances = pd.DataFrame(tree2.best_estimator_.feature_importances_,␣
↪columns=X.columns)

tree2_importances = pd.DataFrame(tree2.best_estimator_.feature_importances_,
columns=['gini_importance'],
index=X.columns
)

tree2_importances = tree2_importances.sort_values(by='gini_importance',␣
↪ascending=False)

Only extract the features with importances > 0
tree2_importances = tree2_importances[tree2_importances['gini_importance'] != 0]
tree2_importances

[78]: gini_importance
last_evaluation 0.343958
number_project 0.343385
tenure 0.215681
overworked 0.093498
department_support 0.001142
salary 0.000910
department_sales 0.000607
department_technical 0.000418
work_accident 0.000183
department_IT 0.000139
department_marketing 0.000078

We can then create a barplot to visualize the decision tree feature importances.

[]: sns.barplot(data=tree2_importances, x="gini_importance", y=tree2_importances.
↪index, orient='h')

plt.title("Decision Tree: Feature Importances for Employee Leaving",␣
↪fontsize=12)

plt.ylabel("Feature")
plt.xlabel("Importance")
plt.show()

41

The barplot above shows that in this decision tree model, last_evaluation, number_project,
tenure, and overworked have the highest importance, in that order. These variables are most
helpful in predicting the outcome variable, left.

Random forest feature importance Now, we plot the feature importances for the random
forest model.

[]: # Get feature importances
feat_impt = rf2.best_estimator_.feature_importances_

Get indices of top 10 features
ind = np.argpartition(rf2.best_estimator_.feature_importances_, -10)[-10:]

Get column labels of top 10 features
feat = X.columns[ind]

Filter `feat_impt` to consist of top 10 feature importances
feat_impt = feat_impt[ind]

y_df = pd.DataFrame({"Feature":feat,"Importance":feat_impt})
y_sort_df = y_df.sort_values("Importance")
fig = plt.figure()
ax1 = fig.add_subplot(111)

y_sort_df.plot(kind='barh',ax=ax1,x="Feature",y="Importance")

42

ax1.set_title("Random Forest: Feature Importances for Employee Leaving",␣
↪fontsize=12)

ax1.set_ylabel("Feature")
ax1.set_xlabel("Importance")

plt.show()

The plot above shows that in this random forest model, last_evaluation, number_project,
tenure, and overworked have the highest importance, in that order. These variables are most
helpful in predicting the outcome variable, left, and they are the same as the ones used by the
decision tree model.

5 pacE: Execute Stage
5.1 Recall evaluation metrics

• AUC is the area under the ROC curve; it’s also considered the probability that the model
ranks a random positive example more highly than a random negative example.

• Precision measures the proportion of data points predicted as True that are actually True,
in other words, the proportion of positive predictions that are true positives.

• Recall measures the proportion of data points that are predicted as True, out of all the data
points that are actually True. In other words, it measures the proportion of positives that
are correctly classified.

• Accuracy measures the proportion of data points that are correctly classified.
• F1-score is an aggregation of precision and recall.

43

5.2 Step 4. Results and Evaluation
• Interpret model
• Evaluate model performance using metrics
• Prepare results, visualizations, and actionable steps to share with stakeholders

5.2.1 Summary of model results

Logistic Regression

The logistic regression model achieved precision of 80%, recall of 83%, f1-score of 80% (all weighted
averages), and accuracy of 83%, on the test set.

Tree-based Machine Learning

After conducting feature engineering, the decision tree model achieved AUC of 93.8%, precision
of 87.0%, recall of 90.4%, f1-score of 88.7%, and accuracy of 96.2%, on the test set. The random
forest modestly outperformed the decision tree model.

5.2.2 Conclusion, Recommendations, Next Steps

The models and the feature importances extracted from the models confirm that employees at the
company are overworked.

To retain employees, the following recommendations could be presented to the stakeholders:

• Cap the number of projects that employees can work on.
• Consider promoting employees who have been with the company for at least four years, or

conduct further investigation about why four-year tenured employees are so dissatisfied.
• Either reward employees for working longer hours, or don’t require them to do so.
• If employees aren’t familiar with the company’s overtime pay policies, inform them about

this. If the expectations around workload and time off aren’t explicit, make them clear.
• Hold company-wide and within-team discussions to understand and address the company

work culture, across the board and in specific contexts.
• High evaluation scores should not be reserved for employees who work 200+ hours per month.

Consider a proportionate scale for rewarding employees who contribute more/put in more
effort.

Next Steps

It may be justified to still have some concern about data leakage. It could be prudent to consider
how predictions change when last_evaluation is removed from the data. It’s possible that eval-
uations aren’t performed very frequently, in which case it would be useful to be able to predict
employee retention without this feature. It’s also possible that the evaluation score determines
whether an employee leaves or stays, in which case it could be useful to pivot and try to predict
performance score. The same could be said for satisfaction score.

44

	Capstone project: Providing data-driven suggestions for HR
	Description and deliverables

	PACE stages
	Pace: Plan
	Understand the business scenario and problem
	Familiarize yourself with the HR dataset

	Step 1. Imports
	Import packages
	Load dataset

	Step 2. Data Exploration (Initial EDA and data cleaning)
	Gather basic information about the data
	Gather descriptive statistics about the data
	Rename columns
	Check missing values
	Check duplicates
	Check outliers

	pAce: Analyze Stage
	Step 2. Data Exploration (Continue EDA)
	Data visualizations
	Insights

	paCe: Construct Stage
	Recall model assumptions
	Step 3. Model Building, Step 4. Results and Evaluation
	Identify the type of prediction task.
	Identify the types of models most appropriate for this task.
	Modeling Approach A: Logistic Regression Model
	Modeling Approach B: Tree-based Model

	pacE: Execute Stage
	Recall evaluation metrics
	Step 4. Results and Evaluation
	Summary of model results
	Conclusion, Recommendations, Next Steps

